If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15m^2-56m+48=0
a = 15; b = -56; c = +48;
Δ = b2-4ac
Δ = -562-4·15·48
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-16}{2*15}=\frac{40}{30} =1+1/3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+16}{2*15}=\frac{72}{30} =2+2/5 $
| 6x+5=-15+8x | | 1/7t=30 | | -2(8p+2)=3(2+7p-2(4+2p)=0 | | 2(-3r+2)=-5(r-3 | | 8p+3=3p+12 | | r/2=r+7/4 | | 2(p+5)-(9+p0=-3 | | X^2-16x+70=-30 | | 15x+4x^2-3=0 | | 4n+6n-2n=2(n+3) | | 7x^+23x-20=0 | | (3x-4)(6(x^2)+7)=0 | | -4x^+10x+6=0 | | 4x+4/5=5x-5/4 | | 15x+4√x=3 | | x+2.7-9.6x=4.6x+2.7 | | 5.2q-4.6q-7.1q=0.9q-4.6 | | 4x+3+8x+1=11x+2 | | x-6+3x-6x=3+10 | | 9x^2-9x-648=0 | | 12w^2+59w=0 | | m3+2m+6=0 | | 9n^2-2=12n | | 2-2x3=-3 | | 20x^2+15x-575=0 | | 16x+48=4x+96 | | 0,8•x=1 | | 9x^2-49=9 | | 7r-6=6.7r-6 | | 64÷16=t^2 | | 3-8x=-9x+1 | | (а-10)х(а/10)=200a= |